Section 2.7 - Projective Morphisms

نویسنده

  • Daniel Murfet
چکیده

Let A be a fixed ring, and consider the projective space PA = ProjA[x0, . . . , xn] over A. On PA we have the invertible sheaf O(1), and the homogenous coordinates x0, . . . , xn give rise to global sections ẋ0, . . . , ẋn ∈ Γ(PA,O(1)). Throughout this section we drop the dot in this notation and just write xi for the global section of O(1). One sees easily that the sheaf O(1) is generated by the global sections x0, . . . , xn, i.e., the images of these sections generate the stalk O(1)P of the sheaf O(1) as a module over the local ring OX,P for each point P ∈ PA. Definition 1. Let f : X −→ Y be a morphism of schemes and F be a OY -module. Let η : F −→ f∗f ∗F be canonical. Given s ∈ F (V ) we denote by f∗(s) the section ηV (s) ∈ f∗F (f−1V ). So f∗(s) = [V, s] ⊗̇ 1 and for x ∈ f−1V we have f∗(s)(x) = (f−1V, ̇ (V, s) ⊗ 1). If φ : F −→ G is a morphism of OY -modules then (fφ)f−1V (f∗(s)) = f(φV (s)). Lemma 1. Let f : X −→ Y be a morphism of schemes and let F be a OY -module generated by global sections x1, . . . , xn ∈ F (Y ). Then the global sections si = f(xi) generate f∗F . Proof. Our notes on the isomorphism (f∗F )x ∼= Ff(x) ⊗OY,f(x) OX,x show that there is a commutative diagram of abelian groups for x ∈ X:

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy projective modules and tensor products in fuzzy module categories

Let $R$ be a commutative ring. We write $mbox{Hom}(mu_A, nu_B)$ for the set of all fuzzy $R$-morphisms from $mu_A$ to $nu_B$, where $mu_A$ and $nu_B$ are two fuzzy $R$-modules. We make$mbox{Hom}(mu_A, nu_B)$ into fuzzy $R$-module by redefining a function $alpha:mbox{Hom}(mu_A, nu_B)longrightarrow [0,1]$. We study the properties of the functor $mbox{Hom}(mu_A,-):FRmbox{-Mod}rightarrow FRmbox{-Mo...

متن کامل

Morphisms of projective spaces over rings

The fundamental theorem of projective geometry is generalized for projective spaces over rings. Let RM and SN be modules. Provided some weak conditions are satisfied, a morphism g : PðMÞnE ! PðNÞ between the associated projective spaces can be induced by a semilinear map f : M ! N. These conditions are satisfied for instance if S is a left Ore domain and if the image of g contains three indepen...

متن کامل

Dynatomic cycles for morphisms of projective varieties

We prove the effectivity of the dynatomic cycles for morphisms of projective varieties. We then analyze the degrees of the dynatomic cycles and multiplicities of formal periodic points and apply these results to the existence of periodic points with arbitrarily large primitive periods. 1991 Mathematics Subject Classification. 14C99, 14J99.

متن کامل

Projective Bundle Theorem in Homology Theories with Chern Structure

Panin and Smirnov deduced the existence of push-forwards, along projective morphisms, in a cohomology theory with cup products, from the assumption that the theory is endowed with an extra structure called orientation. A part of their work is a proof of the Projective Bundle Theorem in cohomology based on the assumption that we have the first Chern class for line bundles. In some examples we ha...

متن کامل

On Some Properties of Pure Morphisms of Commutative Rings

We prove that pure morphisms of commutative rings are effective Adescent morphisms where A is a (COMMUTATIVE RINGS)-indexed category given by (i) finitely generated modules, or (ii) flat modules, or (iii) finitely generated flat modules, or (iv) finitely generated projective modules.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006